
Levenshtein Edit Operations as a Base for a

Morphology Analyzer

Radovan Garab́ık

L’udov́ıt Štúr Institute of Linguistics
Slovak Academy of Sciences

Bratislava, Slovakia
korpus@juls.savba.sk

http://korpus.juls.savba.sk/

Abstract. Levenshtein distance between two strings is defined as the
minimum number of operations needed to transform one string into the
other, where an operation is a character insertion, deletion, or substi-
tution. Sequence of edit operations needed to transform lemma into an
inflected word form can be applied to a broader class of words belonging
to the same paradigm template and can be used as a base for a word
form generator, providing an alternative for commonly used approach
based on word stem and suffixes conforming to an appropriate inflec-
tional paradigm.

1 Levenshtein distance and some definitions

Levenshtein distance[1] is a metric defined on the space of strings as a minimum
number of Levenshtein edit operations needed to transform one string into the
other, where by a Levenshtein edit operation we understand insertion, deletion
or a substitution of a character. Levenshtein distance is commonly used in fuzzy
string comparisons and in evaluating word similarities.

Let S be a set of all strings. A Levenshtein edit operation e can be formally
described as e = (o, s, d) – a triple of operation type o, position in the source
string s and position in the destination string d, where operation type o is one of
replace, insert or delete. For replace or insert, the replacement/new character is
taken from the destination string. For delete, only the source position is relevant.

Sequence of edit operations q = (e1, e2, e3, ...), together with the destination
string D, when applied to a string S ∈ S defines a mapping function f : S 7→ S.
Empty sequence corresponds to identity function.

Let W be a set of all the word (i. e. all the word forms) in a given natural
language – be it a controlled (codified) subset of a language, language attested
in a corpus or an ambitious project of describing the “complete language”.1

The elements of W can be conveniently grouped into lexemes – subsets accord-
ing to (intuitively defined) grammar categories and semantic identities. Words

1 Even if in in this situation the relation of “belongs to” would not be clearly defined
and therefore we could not talk about a proper set.

II Radovan Garab́ık

belonging to one lexeme have the same semantic meaning and differ only in
grammar categories. From each lexeme L ⊂ W we choose one word form l ∈ L
and call this word form a lemma2.

To each word form w ∈ W we can assign a set of grammar categories

Gw = {g1, g2, g3, ...} (two or more such sets can be assigned to the same word
form, in case of homonymy). The exact categorisation into lexemes and grammar
categories is subject to different grammar theories and linguistic opinions and is
by no means fixed for a given language.

Let us define a bijective mapping Gw 7→ Tw from these sets of grammar
categories into short strings called tags. The set T of all defined tags is called
the tagset.

For a lexeme L = {l, w1, w2, w3, ...}, each element of which has been assigned
one or more tags we define a tagged lexeme as a set of tagged word forms (tuples
consisting of a word form and a corresponding tag, wT

i = (wi, ti)):

LT = {(l, tl), (w1, t1), (w2, t2), ...}

Now for each tagged word form wT
i there exists a mapping function fi con-

sisting of Levenshtein edit operations such that fi(l) = wi. Set of mapping
functions {f0, f1, f2, ...} belonging to one lexeme defines a paradigm template.
Conveniently, mapping function f0 maps lemma to itself. Let us take another
lemma l′. By applying each of mapping functions fi to the lemma l′ we get a set
of strings w′

i = fi(l
′). If these strings w′

i are meaningful words from our language
w′

i ∈ W and the set {wi} forms a lexeme L′ (or a subset of a lexeme), we say
that lemma l′ is inflected by the paradigm template of lemma l. Sometimes, in
order to get the full lexeme L′, we have to inflex lemma l′ by several paradigm
templates lj :

L′ =
⋃

j

L′j

In natural languages, we can expect that the paradigm templates as described
above correspond to paradigms as used in common linguistic theories, and that
if the set of grammar categories is selected according to commonly used gram-
mar, inflections (as defined by our Levenshtein edit operations) of almost all the
lemmas in the language can be described by a small number of basic paradigm
templates. This can be an alternative to commonly used approach based on word
stems or root morphemes, suffixes and rule based inflections[2,3]. It is obvious
that we need not to limit ourselves only to the inflectional morphology – the de-
scription above can be applied to any word form changes that can be described in
terms of basic forms, their changes and formal tags, for example it can be used
for derivational morphology, if we can find (derivational) inflection paradigms
and formalise the morphology categories.

2 Strictly speaking, a lemma might not be a part of language vocabulary, but be just a
potential form – see Slovak word pošiel with a formal lemma pôjst’ for a nice example.

Levenshtein Edit Operations as a Base for a Morphology Analyzer III

2 Technical implementation

Our system is really just a morphology generator – for each lemma known to it,
it is able to generate all the forms, together with their respective tags. By putting
all the forms and tags with information about lemma into a database, the system
is able to work as a morphology analyzer – we just look up the analysed form in
the database and find out corresponding morphology tag and lemma.

The system consists of two logically disjunct parts. One part is responsible
for creating tables of paradigm templates and lists of mapping of all the lemmas
into appropriate paradigm templates. This contains also helper programs used
by linguists to create, evaluate and modify these tables and lists.

The second part is meant for end users queries and is nothing more than a
simple wrapper around the database query library, to facilitate the lookup.

The software is published under GNU General Public License[4] version 2
and can be obtained from the Slovak National Corpus WWW page3.

3 General principles

All the texts, input and output in our system is done in UTF-8 encoding[5]. While
the whole system could in principle work in an 8-bit encoding, in order to evade
eventual problems with encodings we decided to keep all the data exclusively
in UTF-8. This means that all the files parameters and the output of all the
commands mentioned hence are in UTF-8.

Since it is a suffix morphology we are interested in, we need to count the
position for Levenshtein edit operations from the end of the words, so that words
of different lengths but sharing the same suffix inflections can be declined by the
same paradigm template, in order not to inflate unnecessarily the number of
paradigm templates. This is easily realised by reversing the input strings before
applying the edit operations, and by reversing the output obtained as the result
– all done transparently to the users.

Another little twist used to keep the number of paradigm templates down is
based on the observation that, at least in some Slavic languages, the orthography
often marks certain phonetic features implicitly. For example, palatalisation in
Western Slavic languages is marked either by special diacritics, or not marked
if a certain vowel follows. Since inflection suffixes often start with a vowel, the
overall visual effect is that of stripping diacritics from the last consonant of the
root morpheme during inflection. This means that we need at least as many addi-
tional paradigm templates as there are different possible palatalised consonants
at the end of lemmas, because for each of the consonants, the change“consonant

with diacritics” → “consonant without diacritics” is a separate Levenshtein edit
operation. Consequently, if we encode the diacritic sign as a separate character,
all the edit operations would converge to one, deletion of the diacritics. Fortu-
nately, this is exactly what the Unicode normalization NFD does[6]. Therefore,

3 http://korpus.juls.savba.sk

IV Radovan Garab́ık

we designed our system to work in NFD normalization internally, normalizing
user input into NFD before processing, and normalizing the output to NFC –
again, completely transparently to the user.

4 Format of a paradigm template

Paradigm templates are described in separate files, one file for one paradigm
template. The files have .par extension and are scanned recursively down to an
arbitrary deep directory structure – this makes it possible to conveniently groups
paradigm templates in subdirectories, for example according to commonly used
part-of-speech categories or first letters of a template name, or any combination
thereof.

Each paradigm template file is a simple text file in UTF-8 encoding. Any line
beginning with # U+0023 NUMBER SIGN is a comment and is ignored, empty lines
are ignored too. First non-ignored line contains either a single word – lemma of
the paradigm, that serves as a paradigm template name, or it contains two words
separated by a whitespace – first one is lemma, second one template name (more
templates can exist for the same lemma, in case of highly homonymous lexemes).
Template name is unique for a given template, two templates cannot have the
same template name. All the following lines have to begin with tag, followed by
colon, followed by a specific inflected word form for the given tag – or two or
more word forms separated by a whitespace, in case of several possibilities.

ucho ucho_2

ucho: orgán sluchu, arch. tvar G pl.

SSns1: ucho

SSns2: ucha

SSns3: uchu

SSns4: ucho

SSns5: ucho

SSns6: uchu

SSns7: uchom

SSnp1: uši

SSnp2: ušú ušı́

SSnp3: ušiam

SSnp4: uši

SSnp5: uši

SSnp6: ušiach

SSnp7: ušami

Table 1. Example of a paradigm template, with lemma ucho and paradigm template
name ucho_2. Note the stem change in plural and double form in genitive plural.

Levenshtein Edit Operations as a Base for a Morphology Analyzer V

5 Working with paradigm templates

Contrary to common trends, we have not designed our system to be a monolithic
application with a graphical user interface, but rather as a set of command line
utilities with a clearly defined functionality.

Paradigm template can be created either fully manually, with an ordinary
text editor, by entering all the tags and corresponding word forms, or by inflect-
ing the new paradigm template lemma by another, already existing template
and manually fixing the discrepancies.

Following commands are used to work with paradigm template tables and
lists:

mlv decl lemma [template]
Inflex lemma and print all the inflected forms, using either given paradigm
template, or a default one if not given.

mlv addpar new template old template
Create a new paradigm template, using old template to inflex lemma given
as new template. new template can be optionally given as a full path inside
the data directory, such as nouns/masculine/lemma.

mlv learn

Read all the tables and prepare internal pickled dictionaries for further use.
It is necessary to run this command in order for any changes in the paradigm
templates or lists to take effect.

mlv maketables

Prepare constant database tables.

6 Format of paradigm lists

A paradigm list maps all the lemmas from the language into paradigm tem-
plates. File containing paradigm list has .list extension, and similarly to the
paradigm templates, multiple files with paradigm lists are possible, in an arbi-
trary directory structure. Again, empty lines and lines beginning with # U+0023

NUMBER SIGN are ignored. Any non-ignored line contains lemma, followed by a
colon, followed by a name of paradigm template the lemma should be inflected
by. If a lemma can be inflected by two or more paradigm templates, it should be
specified more times.

7 Software needed

As our preferred programming language is Python[7], the whole system was im-
plemented in Python and is a bit Python-centric. A reasonably recent python ver-
sion is needed, the system was developed with version 2.3. We used GNU/Linux
as our development platform, but the system should work on any reasonably
modern Unix OS.

To create and test paradigm templates, following software libraries and
python modules are needed:

VI Radovan Garab́ık

– python-levenshtein extension module,
http://trific.ath.cx/resources/python/levenshtein/

– cdb-compatible library[8], such as tinycdb,
http://www.corpit.ru/mjt/tinycdb.html

– python-cdb module,
http://pilcrow.madison.wi.us/

For end users, in order to access the database tables, only the cdb library is
needed for the C interface, and python-cdb for the python interface.

8 Structure of constant database tables

There are four constant database tables created. First one lemma2forms.cdb

contains lemmas as keys, with inflected word forms as values. Second table
lemma2tagforms.cdb has again lemmas per keys, but the values contain tags to-
gether with inflected forms (as one string, joined by \t tabulator character). The
third table form2lemma.cdb contains inflected word forms for keys, with all pos-
sible lemmas as values for a given key, and the fourth table form2taglemma.cdb
has inflected word forms for keys and tags joined with lemmas as values.

9 C API

C-based searching is provided by a convenient library mlv_libquery. The library
intentionally mimics the usage of cdb library and provides following functions:

int mlv init (char *table_file, struct cdb *cdb);

Initialises structure cdb, using table_file as a file name of table that
should be initialised. table_file should be one of "lemma2forms.cdb",
"lemma2tagforms.cdb" or "form2lemma.cdb", optionally with a path spec-
ification. Returns 0 on success or a negative value on error.

void mlv free (struct cdb *cdb);

Releases internal structures holding information about an open table and

closes the file associated.
int mlv findinit (struct cdb_find *cdbf, struct cdb *cdb,

char *key);

Initialises the searching structure cdbf to search for key string Returns
positive value on success, negative on failure.

int mlv findnext (struct cdb_find *cdbf, struct cdb *cdb,

char *val, int maxlen);

Finds next (first if called right after mlv_findinit) matching key. Returns
positive value if a given key was found, zero if there are no more such keys,
and negative value on error. If the key was found, the value is put into *val,
up to the maxlen-1 characters, and the trailing '\0' is added to the string.

Code using the C library should include "mlv_libquery.h" and <cdb.h>

headers.

Levenshtein Edit Operations as a Base for a Morphology Analyzer VII

#include <cdb . h>

#include "mlv_libquery .h"

void main (void) {
struct cdb cdb ;
struct cdb f ind cdbf ;

char va l [2 5 5] ;
int i ;

char ∗key = "mier" ;

m l v i n i t ("form2lemma .cdb" , &cdb) ;
m l v f i n d i n i t (&cdbf , &cdb , key) ;
while (mlv f indnext (&cdbf , &cdb , &val , s izeof (va l)) > 0) {

p r i n t f ("%s\n" , va l) ;
}

mlv f r e e (&cdb) ;
}

Listing 1.1. Get all the possible lemmas for a word mier – miera, mier, mierit’

10 Python API

Python API is contained in the mlv_query module. The module contains one
class, MlvQuery, providing a dictionary-like interface. The class’ constructor
takes one parameter, file name of a constant database table. Class instance
supports get, has_key, __getitem__, __iter__, __len__ and __contains__

methods. The __getitem__ method returns a generator iterating through all
the values bound to the key.

11 Limits

The system, as described here, can conveniently handle suffix changes. While
the prefix morphology can be in principle handled by Levenshtein operations, in
practice it means creating a new paradigm template for each lemma with differ-
ent length (since the positions of Levenshtein edit operations are counted from
the end of the word), and therefore vastly increasing the number of paradigm
templates. Of course, for a hypothetical language with prefix-only morphology,
the system works well, if we remove the word reversing. However, for natural
languages with mostly postfix morphology and only limited prefix morphology4,

4 For example, prefix morphology in many Slavic languages is limited to creating
superlatives with the use of prefix naj-, ������� and verb and adjective negation with
ne-, ����� or similar prefixes, often even masked by orthography and written separately.

VIII Radovan Garab́ık

from mlv query import MlvQuery

q = MlvQuery ("form2lemma .cdb")
print l en (q) # number o f e n t r i e s in the t a b l e

for lemma in q ["mier"] :
output i s mier miera mierit’
print lemma . encode ("utf -8") ,

t e s t i f word ”mierou ” i s in the t a b l e

print q . has key ("mierou") # True or False

print "mierou" in q # the same as above

for word in q : # pr in t a l l t h e word forms in the t a b l e

print word . encode ("utf -8")

Listing 1.2. Example of the Python API

the recommended way is to use a separate rule-based algorithm to deal with
prefixes.

The system is suitable especially for languages that have reasonably complex
suffix morphology with a reasonably large set of basic paradigm templates – a
prime example of this are Slavic languages. In fact, we are deploying this system
for Slovak language.

The system does not handle compound morphology. For languages having
rich system of compound morphology (e. g. German), the system is suitable only
to describe morphology of core vocabulary, and the compound word analysis has
to be taken care of separately by other means.

For languages with mostly template morphology (Arabic, Hebrew), the sys-
tem could be conveniently used if the word stem changes can be regularly de-
scribed in terms of positions of changed graphemes, counted from the end of the
word – both Arabic and Hebrew probably satisfy these requirements.

For agglutinative languages (Hungarian, Finnish, Turkish), the situation is a
bit different. These languages tend to have very regular morphology, but thanks
to the agglutinative nature, each lemma has a huge number of possible forms.
Therefore, contrary to the situation of fusional languages, agglutinative lan-
guages would require to write huge paradigm templates, but on the other hand,
the number of paradigm templates would be quite low – so the system might be
quite usable here. However, thanks to the regularity of agglutinative morphol-
ogy, it might be in fact less demanding to use rule-based algorithmic approach
to the morphology analysis.

References

1. 	�
��
�������
����������������! ��"�#%$���&'
)(*",+�&.-/#�-�0�1�23��4�
��%#�
657�&80�2,+�
��%#��9����-6��23�"(:#; 235<
6=�
���#%�>-�#�5?��"34�"3���% �"�(%49��@�ACB8B8BEDF��G,H�IJ��K%�9LMG,NHOP'Q�K�O,R*Q3K�Q*�

Levenshtein Edit Operations as a Base for a Morphology Analyzer IX

2. Hajič, J., Hladká, B.: Czech Language Processing - POS Tagging. In: Proceedings of

the First International Conference on Language Resources and Evaluation. Granada,
Spain: (1998) 931–936

3. Sedláček, R.: Morfologický analyzátor češtiny. PhD. thesis. Faculty of Informatics,
Masaryk University Brno, (1999)

4. Free Software Foundation, Inc. (1989, 1991)
5. The Unicode Consortium. The Unicode Standard, Version 4.0 Boston, MA, Addison-

Wesley Developers Press, ISBN 0-321-18578-1 (2003)
6. The Unicode Consortium. Unicode Technical Report #15: Unicode Normalization

Forms. http://www.unicode.org/unicode/reports/tr15/
7. http://www.python.org/
8. http://cr.yp.to/cdb.html

