Corpus Construction Tools

Radovan Garabik
Jazykovedny ustav L. Stira SAV
813 64 Bratislava, Slovakia

korpus@korpus.juls.savba.sk, http://korpus.juls.savba.sk

Abstract

CoBpeMeHHOE pa3BUTHE BBIYMCINTEIBHON TEXHHKHM MO3BOIAET HAM IIPUHATh YYacTHE B PaHbIIE HEBO3MOXHBIX
HaIlpaBJICHUSX HAyYHOTO HCCIIENOBAHMS €CTECTBEHHOTO s3bIka. OCHOBHOH, HEOOXOMMMOM 0a30i NaHHBIX SIBIISIFOTCS
KOPITYCHI SI3BIKOB, B TOM YHCII€ M PETPE3CHTaTUBHBIC OONbIIMe (HAMOHAIBHBIC) KOPIYCHl. YK€ MIMPOKO IOCTYITHBI
o0mmpe mporpaMMHBIE cpeicTBa Io3Bossitoniee 3¢dexkTnBHO 00pabareiBaTh OOJBIIME KOMMYECTBA TEKCTOB, KaK M
Cpe/CTBa MOMCKA B KopIrycax. Beé-Taku, coznanue Kopiryca ¢ OONBIINM KOJMYECTBOM JAHHBIX TPeOyeT onpenenEHHbII
IUTaH OpraHu3alul 00padOTKH TEKCTOB, BMECTE C CTPYKTYPOIl MporpaMMHOro obecnieueHus. B nokiane npeacraeieHa
o01mas cucreMa IO3BOJISIONIAS OBICTPO MPUMEHHUTH CIIeNU(pUUECKHE YepThl 00paOOTKH JaHHBIX KOHKPETHOTO SI3BIKA.
OO6cyxaeHbl He0OXOIMMBIE aCHEeKThl HAIIMOHAIBHOTO KOPITyCa, KaK ¢ JMHIBUCTHUECKOW, TaK ¥ C KOMIIBIOTEPHOH TOUEK
3penms. CucreMa HCIIONB3YeT NMPEUMYIIECTBEHHO COBPEMEHHBI OOBEKTHO-OPHEHTHUPOBAHHBIA SI3BIK
nporpammupoBanust Python, nMeronuii mpeBoCXoIHbIE BO3MOXXHOCTH 00pa0OTKH TEKCTOBBIX JaHHBIX. Pazmerka Tekcra
COCTOMT W3 JBYX YacTei, W3 JIMHIBUCTHYECKOH (BHYTPEHHEH) pa3METKH TEKCTa, KOTOpas SIBISETCS BHYTPEHHUM
CBOMCTBOM JIMHIBUCTHYECKHX €IMHUIL (CIOB) B TEKCTE, U U3 OOIIMX AHHBIX O JOKYMEHTax (METaTeKCTOBasl, BHEIIHSIS
pa3MeTka). BHyTpeHHsI1 pasMeTka TeKcTa BXOAMUT HpsMO B Qopmar 00pabOTaHHBIX TEKCTOB, B pe3yJbTare
WCTIOJIb30BaHMS CYIIECTBYIOIIMX CTAaHAAPTOB PENpPEe3CHTAIMKM TEKCTOBBIX NMaHHBIX, kak XML (XCES). Buemmnss
pa3MeTKa COXpaHseTCs B IPOCTBIX TEKCTOBBIX (aiiinax, ¢ peTIUHOHHONW 0a30il NaHHBIX TOCTPOSHHOW HaJ ATOH

CTPYKTYpPOH.

Introduction

There exists a reasonably extensive literature concerning principles of corpora
structure and end-user interaction [1, 2, 3, 4 and many others]. However, technical
details of corpora construction are usually left out as uninteresting or too closely tied
up with a specific corpus, and therefore not applicable in general. As with every big
project, creating and maintaining an extensive (i.e. “national”) corpus of written
language requires careful thought up design of data structure and of data
manipulation. Consequently, each newly created big corpus ends up reinventing the
wheel and implementing the data workflow and manipulation from the scratch.
During the Slovak National Corpus construction, we did basically the same thing,
but we tried to make our design general and clean, in order to serve as an inspiration
for eventual other yet to be created big corpora. This does not include end-user

information searching by a corpus manager — there are several (thought not many)

mailto:korpus@korpus.juls.savba.sk
http://korpus.juls.savba.sk/

different corpus managers available, that could be plugged into our system.

Premises of big corpora design

First, we have to explain what we mean by a “big” corpus. The first criterion is the
size (number of words). Second criterion is a richness of corpus annotation.
Obviously, size and annotations by themselves are not a requirement for a complex
and careful design, because if the goal is just to collect as much texts as possible
(e.g. from the Internet) and make them available in corpus format without the need
of any additional non-trivial markup and annotation, we do not need any special data
structures or construction plans. Conversely, very carefully annotated corpus of
documents, each of them of a great importance (typical example can be a historical
corpus of texts in a rare language) has different goals and the data manipulation,
conversion and annotation is best left completely to be done by human researchers.
Third criterion is an extensibility of the corpus. For one-time, create-and-forget
corpora, even if big in size and with a rich annotation, ad-hoc written tools and
creation procedures are adequate.

Therefore, by a “big” corpus we understand a corpus with size exceeding
comfortable dimensions for easy human and computer processing (millions of
words), with a rich, non-trivial annotation (bibliographic information and linguistic
annotation — e.g. lemmatization and grammar tagging) , and with the need to
accommodate new texts being added into the corpus.

Since the incoming data can be in many different formats, and because as the final
result of text processing we should obtain full linguistic analysis, it is not feasible to
run the whole conversion process for all the different input formats. This leads us to
a need to deploy a common intermediate format for text storage. This way, we write
conversion procedures turning many different incoming text formats into this
intermediate format, which is then further analysed. As the XML format gained
popularity and became de facto standard for text storage, the Text Encoding

Initiative turned from SGML formats to XML, and has modified SGML based CES

3

format into an XML based XCES [5]. Using XCES format as an intermediate
storage has an advantage in being compatible with several other big corpora, and a

reasonable high availability of many different XML processing tools.

Requirements

The authors' programming language of choice is Python [6]. However, the presented

system is highly modular, and in order to use it as provided, no special

understanding of Python is required.

System needs following libraries and programs installed before:

e Python, at least version 2.3, with standard library

o FElementTree XML parsing library

e to parse Microsoft Word (.doc) files, antiword [7] version at least 0.35

e to parse Rich Text Format (.rtf) files, r¢f2xml and transform [8]

e to search the metadata (recommended), an SQL database is required. Both
MySQL and SQLite are supported.

e UTF-8 capable terminal and text editor

Recommended setup consists of a central UNIX server with k3t and MySQL server

installed. In order to work with the system, the users (annotators) remotely log into

the server. The workstation's operating system is irrelevant, as long as it is able to

provide a reliable UTF-8 terminal and ssh or telnet connection to the server'.

The system i1s cluster friendly — central server filesystem can be exported to cluster

nodes and data conversion can be distributed throughout the cluster.

Corpus structure

Data are kept in four levels called them Archive, Bank, Corpusoid and Data.
In Archive, original input texts are kept , without any conversion or modification.
In Bank, texts are converted into a carefully chosen subset of the XCES format. One

document in the Archive can be divided into several texts in the bank. Apart from

1 part of operating system in MacOsX and most GNU/Linux distributions; provided by many different terminal
emulators (e.g. putty) for Microsoft Windows .

the conversion, no other analysis is done here.

Corpusoid corresponds one-to-one to the Bank, with additional linguistic
information (such as lemmatization and morphological tagging).

In Data, texts are converted into format suitable for the corpus manager used
(typically vertical text).

Documents in the Archive, Bank, Corpusoid and Data are are organized in a tree
directory structure. There 1s a fixed number of subdirectory levels for Archive, and
another (bigger) number of levels for Bank, Corpusoid and Data. The exact meaning
of the levels is not rigidly specified, but is left to a corpus designer to reflect a
logical structure of the corpus here. For example, the structure deployed in the
Slovak National Corpus has 4 levels for the Archive, corresponding to the year,
month and day of data acquisition, and the fourth level number enumerates the
documents acquired in one day. Bank contains one additional level, used for
numbering multiple document in the Bank coming from the same document in the

Archive.

File formats conversions

Under typical circumstances, input texts coming into the corpus are in many
different formats.

Texts produced by different authors often differ in subtle details, e.g. in the usage of
typographic quotes, in using different conventions for various types of hyphens and
quotes, in header and section formatting. There is also the question of many varieties
of html files, acquired from the Internet and forming a substantial part of a corpus.
While all these differences and formats could be easily dealt with during manual
conversion, it is desirable to have an automated conversion for as much data as
possible. This is exceptionally useful in case of a periodical publications, where we
can have many thousands of different text units contained in one archive document
(e.g. newspaper). Archive conversion tools look for a subdirectory called .convert,

for each archive unit, and execute an executable called convert contained in this

5

directory. This executable accepts two parameters, the first is archive Id of the
document, and the second is the full path to the archive directory. The script is
responsible for converting all the desired texts belonging to this archive ID into the
Bank. It can be written in any programming language, but in case of using Python,
there is a broad range of helper functions for different conversions available. This
script 1s also responsible for eventual “levelling” of all typographical differences for
different archive documents, and for creating correct (possibly empty, with the

exception of Id and Sourceid key) Bank annotation.

Tokenization and segmentation

The system contains a tokenization module, and amodule for grouping the tokens
into bigger structures (sentences). A sample rule-based tokenization module suitable
(with minor modifications) for most alphabetic languages is provided, as well as a

sample segmentation module suitable for the Slovak language.

User interface

Nowadays, user interaction with a computer is carried out primarily via Graphical
User Interface (GUI), even if Command Line Interface (CLI) has still many
supporters, mostly among technically more experienced users, especially because of
its expressive powers and usage speed unmatched by GUI.

We found out that teaching basics of GUI interaction to people with little or no
computer training is extremely time consuming and difficult, since using GUI
requires a lot of assumed user knowledge still not universally widespread. On the
other end, it is relatively easy to teach the users a few necessary commands, and as
our experience shows that even complete computer novices can very quickly
become proficient in working with the system. Therefore, presented system is (rather
unusually for modern times) heavily CLI oriented. Adding an optional GUI layer on

top of it is rather straightforward and easy, but it was not necessary for our purposes.

Drawbacks and limitations

First, perhaps the most obvious drawback lies in the use of XML formats, as
opposed to plain unmarked texts. Parsing XML is usually a CPU intensive task, and
when combined with using an interpreted programming language and several
separated stages of text processing, it leads to more computer time needed.
However, it is compensated by a versatility and clarity of the whole system.

Another design insufficiency is a strict separation of input data path into exactly four
levels. Sometimes, it means that too much of logical processing is going to be
crammed into the third level (corpusoid), since, by design, all linguistic processing

should be carried out here.

Software availability and status

The system described herein is released under the GNU General Public License
version 2 and is freely downloadable from the Slovak National Corpus WWW page
(http://korpus.juls.savba.sk/download/). At the time of writing, the status of the
software would be best described as “late alpha” — it works for the authors, but it is
still rather complicated to install and use, and there are numerous small bugs and
imperfections. Also the documentation is very scarce and unfinished, but the system

is provided to the general public in hope that it could be at least partially useful.

Literature

1. JaroSova, A.: Korpus textov slovenského jazyka. In: Slovenské re€ 2 (1993) 89-95

2. Simkovéa, M.: Pocitacové spracovanie prirodzeného jazyka a Slovensky ndarodny
korpus. Budmerice: PocitaCova podpora prekladu (2003)

3. Zakharov, V.:Russian Corpus of the 19" Century. In: Proceedings of the 6"
International Conference TSD 2003. Ceské Budgjovice, Czech Republic (2003)

4. Przepiorkowski, A.: The IPI PAN Corpus preliminary version. Instytut Podstaw
Informatyki PAN, Warsaw, Poland (2004)

5. 1de, N., Bonhome, P., Romary, L.: XCES: An XML-based Encoding Standard for

Linguistic Corpora. In: Proceedings of the Second International Language

7

Resources and Evaluation conference. Paris: European Language Resources
Association (2000)

6. http://www.python.org

7. http://www.winfield.demon.nl/index.html

8. http://rtf2xml.sourceforge.net

9. Brants, T.: TNT — Statistical Part-of-Speech Tagging.
http://www.coli.uni-saarland.de/~thorsten/tnt/

10.http://www.textforge.cz

Prispevok odznel na konferencii Megaling'05, Meganom, Ukrajina, 27. 6 — 2. 7 2005 a bol
publikovany v zborniku.

Abstrakt bol publikovany v zborniku abstraktov.

http://www.textforge.cz/

	Corpus Construction Tools
	Abstract
	Introduction
	Premises of big corpora design
	Requirements
	Corpus structure
	File formats conversions
	Tokenization and segmentation
	User interface
	Drawbacks and limitations
	Software availability and status
	Literature

